Eine unglaubliche Geschichte: Wikipedia und der Hamburger Forsythienstrauch

Von Sebastian Lüning und Josef Kowatsch

An der Hamburger Binnenalster steht nahe der Lombardsbrücke ein Forsythienstrauch. Vor wenigen Tagen, am 24. März 2017, war es wieder soweit: Der Strauch blühte! Na und, wird der eine oder andere sagen. Soll er doch blühen. Nun ist dieser Strauch jedoch nicht irgendein Strauch, sondern auch ein wissenschaftliches Studienobjekt, das seit 1945 ununterbrochen beobachtet wird. Der Blühtermin des Forsythienstrauchs wird penibel festgehalten und in einer Langzeitreihe aufgetragen. Schauen wir zunächst auf die letzten 30 Jahre, ein Zeitraum der kimawissenschaftlich Relevanz besitzt (Abb. 1). Auf der X-Achse sind die Jahre seit 1988 aufgetragen, auf der Y-Achse der Blühtermin, gemessen in Tagen nach Jahresbeginn (1. Januar). Gut zu erkennen ist der deutliche Verspätungstrend beim Blühen. Der neue Datenpunkt aus diesem Jahr (2017) passt sich bestens in diesen Trend ein. Späteres Blühen ist in der Regel ein Anzeichen für einen kalten Winter (Abb. 2). Insofern will der unbestechliche Hamburger Forsythienstrauch so gar nicht in das Erzählmuster einer katastrophalen Klimaerwärmung passen.

 

Abbildung 1: Verschiebung des Blühtermins von Forsythiensträuchern auf der Hamburger Lombardsbrücke während der letzten 30 Jahre. Auf der X-Achse sind die Jahre seit 1988 aufgetragen, auf der Y-Achse der Blühtermin, gemessen in Tagen nach Jahresbeginn (1. Januar).

 

Abbildung 2: Entwicklung der Februar-Temperaturen in Deutschland während der vergangenen 30 Jahre. Daten DWD. Graphik: Kowatsch

 

Aufgrund seiner klimaologischen Relevanz besitzt der Hamburger Strauch sogar seine eigene Wikipedia-Seite. Bis zum Februar 2017 war die Seite relativ knapp gehalten und bestand eigentlich nur aus einem Unterkapitel mit dem Titel “Geschichte”. Dort hieß es damals (beim Link ganz nach unten scrollen um die Seitenversion zu begutachten):

Der Hamburger Forsythien-Kalender ist die phänometrische Aufzeichnung der Zeitpunkte des Blühbeginns der Forsythiensträucher an der Lombardsbrücke in Hamburg seit 1945.

Geschichte

Im zerstörten Hamburg, kurz vor Ende des Zweiten Weltkriegs, fielen Carl Wendorf am 27. März 1945 die blühenden Forsythiensträucher inmitten der Trümmer an der Lombardsbrücke auf. Er beschloss jedes Frühjahr den Blühbeginn zu notieren, was zu einer lückenlosen Aufzeichnung ab 1945 führte. Seit dem Tod von Carl Wendorf im Jahr 1984 führt Jens Iska-Holtz diese Liste weiter. Er meldet die Daten als phänologischer Beobachter an den Deutschen Wetterdienst.[1][2]

Die zunehmende Verspätung des Blühens während der letzten 30 Jahre blieb seltsamerweise im Wikipedia-Artikel unerwähnt. Kürzlich kontaktierte uns ein Naturfreund, dem diese Informationslücke auf der Wikipedia-Seite ebenfalls aufgefallen war. Der anonym bleiben wollende Naturfreund erklärte, dass er sich in der Mitte zwischen den Klimalagern verortet sehe, beide Seiten hätten zum Teil gute Argumente. Er hatte vom kruden Vorwurf von Seiten der Skeptiker gelesen, dass Wikipedia angeblich von Klimaktivisten unterwandert wäre. Dies sei schwer nachvollziehbar, dachte er sich.

Daher wagte er ein Experiment. Ganz oben auf der Wikipedia-Seite gibt es die Reiter “Bearbeiten” und “Versionsgeschichte“. Dort kann Jedermann/Jederfrau Ergänzungen oder Korrekturen von Wikipediaartikeln vornehmen. Am 8. Februar 2017 loggte sich der Naturfreund als “Greenway21″ bei Wikipedia ein und schlug eine wichtige Ergänzung auf der Seite des Hamburger Forsythienstrauches vor:

Während der letzten 50 Jahren ist ein generelles Vorrücken der Forsythienblüte im Jahresverlauf zu erkennen. Seit 1988 allerdings verspätet sich der Blüh-Termin der Hamburger Forsythien wieder zunehmend. [3]

Ein wissenschaftlich einwandfreies Statement, beschreibt es doch in fairer Weise zum einen den Langzeittrend und andererseits den hochrelevanten aktuellen Trend der letzten 30 Jahre. Die offizielle Langzeitreihe seit 1945 können Sie auf dieser Webseite des Deutschen Wetterdienstes anschauen (zweite Graphik auf der Seite, gelbe Kurve). Das Experiment hatte begonnen. Würden die Wikipedia-Redakteure die wichtige Ergänzung zulassen und freischalten? Es dauerte keine halbe Stunde, da war die Ergänzung wieder rückgängig gemacht. Ein Seiten-Editor mit dem Codenamen “DeWikiMan” verweigerte die Aufnahme. Grund: Der Trend zum verspäteten Blühen während der letzten 30 Jahre wäre statistisch nicht ausreichend belegt. Schauen Sie sich Abbildung 1 nocheinmal genau an. Ist der Trend wirklich nicht erkennbar?

Ganz offensichtlich wurde hier ein wichtiger Zusatz aus persönlichen Gründen blockiert. Daher lohnt sich ein Blick auf die Person “DeWikiMan”. Wer steckt dahinter? In seinem Wikipedia-Profil outet er sich als ökologisch Interessierter:

Mein Hauptinteresse hier gilt allem, was mit Umweltökonomik, Ökologischer Ökonomik und speziell Klimaökonomik (das Rot schmerzt!) zu tun hat.

Genau so stellt man sich einen Klimaaktivisten vor. Ein klassischer Torwächter, der auf Wikipedia nur Inhalte zulässst, die mit seiner Ideologie übereinstimmen. Auf keinen Fall ein guter Inhalts-Schiedsrichter für diese wichtige Online-Enzyklopädie. Aber DeWikiMan setzte noch einen oben drauf. Er grübelte 11 Tage und schrieb dann selber einen längeren Absatz, den niemand hinterfragte, ja hinterfragen konnte, denn DeWikiMan hatte ja die Änderungsmacht. Am 19. Februar 2017 erschien auf der Wikipedia-Seite ein ganz neues Unterkapitel mit dem kuriosen Titel “Früherer Blühbeginn“, also dem genauen Gegenteil des aktuellen Trends:

Im Jahr 1995 stellte der DWD fest, dass die Lombardsbrücke mit einer Verfrühung um 26 Tage in 50 Jahren von allen Standorten mit einer phänologischen Datenreihe den stärksten Trend aufwies.[3] Auch 2015 konstantierte der DWD für den Zeitraum zwischen 1945 und 2014 einen Trend zu einem immer früheren Blühbeginn.[4] Neben Änderungen des Klimas sind auch andere Änderungen der Umwelteinflüsse an diesem urbanen Standortes als Ursache in Betracht zu ziehen.[2][3] Hinzu kommt, dass die Forsythie, wenn kein ausreichender Kältereiz vorhanden ist, nicht unbedingt der Temperatur folgt. So gab es im Winter 2006/2007 ein Temperaturmaximum an der Lombardsbrücke, dennoch blühte die Forsythie relativ spät, deutlich nach ihrem Rekordwert 2001/2002, weil im warmen Winter 2006/2007 der Kältereiz gefehlt hatte.[4]

Der Wikipedia-Klimaaktivist nutzte seinen Hebel, um die Desinformation auf die Spitze zu treiben. Anstatt im Text in transparenter Weise auch Raum für den unbequemen Trend der letzten 30 Jahre zu schaffen, umtänzelt er ihn und betrachtet lediglich das für ihn passende Zeitfenster von 60 Jahren. Bitterböses Rosinenpicken. Wir danken Naturfreund “Greenway21″ für diesen wichtigen Test, der in eindrucksvoller Art und Weise bestätigt, dass Klimaaktivisten die Wikipedia-Seite gekapert und fest im Griff haben. DeWikiMan ist als Editor schwer haltbar geworden und Wikipedia sollte seine Aktivitäten einmal etwas genauer unter die Lupe nehmen. Schade, dass das ursprünglich ausgezeichnete Konzept einer von Freiwilligen geschriebenen Online-Enzyklopädie von politischen Aktivisten gekapert und in sensiblen Themenbereichen unbrauchbar gemacht wurde.

 

Abbildung 3: Hamburger Forsythiensträucher an der Binnenalster. Foto: NordNordWest, Lizenz: Creative Commons by-sa-3.0 de

 

 

Laut einer Studie der Universität Hamburg könnten die Treibhausgas-Emissionen trotz des Erneuerbare-Energien-Gesetzes steigen

Es hat ein wenig gedauert, aber nun hat man sogar in Berlin realisiert, dass nur gemeinsame internationale Anstrengungen Sinn machen, wenn es um globale Probleme geht. Daniel Wetzel am 11. März 2017 in der Welt:

Bundesregierung gibt Alleingänge im Klimaschutz auf
Deutschland hat im Klimaschutz stets den Vorreiter und Musterschüler gespielt. Doch damit ist jetzt offenbar Schluss. Kanzleramtsminister Peter Altmaier spricht sich gegen nationale Alleingänge aus. [...] Denn der Bundesminister für besondere Aufgaben [Altmaier] stellte den versammelten Unternehmern und Managern die Erfüllung eines lang gehegten Wunsches in Aussicht: Mit den teuren klimapolitischen Alleingängen Deutschlands könnte es nach seinen Worten bald vorbei sein. „Ich bin fest davon überzeugt, dass der Weg nationaler Ziele falsch ist“, erklärte Altmaier vor den Teilnehmern der exklusiven „Klausurtagung Energie- und Umweltpolitik“, zu der der Wirtschaftsrat der CDU eingeladen hatte. Es sei zwar „schwer, bestehende Vereinbarungen zu canceln“, sagte Altmaier. Doch künftig brauche man „europäische und internationale Ziele“.

Ganzen Artikel in der Welt lesen.

Bereits einige Tage zuvor, am 6. März 2017, erläuterte Wetzel in derselben Zeitung die ungeschminkten Fakten des deutschen Energieexperiments:

Teuer und unrealistisch Die Energiewende droht zum ökonomischen Desaster zu werden
Während die Kosten für die Energiewende weiter steigen, sinkt laut einer eine McKinsey-Langzeit-Studie die Zahl der Ökostrom-Jobs. Und auch das wichtigste Ziel der Umstellung verfehlt die Politik. ie Sichtweisen der Bundesregierung und der Berater könnten nicht unterschiedlicher sein. Gerade hat die neue Bundeswirtschaftsministerin Brigitte Zypries (SPD) in hoher Auflage eine Broschüre mit dem Titel „Die Energiewende – unsere Erfolgsgeschichte“ verteilen lassen. Da wird auf 20 Seiten gepriesen, dass Deutschland inzwischen einen Ökostrom-Anteil von 32 Prozent erreicht hat und die Stromversorgung dabei weiterhin die sicherste der Welt ist. Die Strompreise für private Haushalte hätten sich stabilisiert. Insgesamt, so Zypries, sei die Energiewende „nachhaltig und sicher, bezahlbar und planbar, verlässlich und intelligent“. Ganz anders sieht das Bild aus, das die Beratungsgesellschaft McKinsey mit der aktuellen Fortschreibung ihres „Energiewende-Index“ zeichnet. Das Expertenteam um Senior Partner Thomas Vahlenkamp überprüft alle sechs Monate anhand von 15 quantitativ messbaren Kriterien, ob die von der Politik aufgestellten Energiewende-Ziele noch erreichbar sind. Der Titel dieses Papiers: „Die Kosten steigen weiter.“

Ganzen Artikel auf welt.de lesen.

Zu allem Überfluss scheint das vormals so hochgelobte Erneuerbare Energien Gesetz (EEG) das ganze Gegenteil von dem zu bewirken, was versprochen wurde. Pressemitteilung der Universität Hamburg vom 14. Februar 2017:

Wieviel Klimaschutz steckt im EEG?

Laut einer Studie der Universität Hamburg könnten die Treibhausgas-Emissionen trotz des Erneuerbare-Energien-Gesetzes steigen.

2017 ist die Reform des Erneuerbare-Energien-Gesetzes (EEG) in Kraft getreten. Mit dem EEG soll der Ausstoß von Treibhausgasen verringert und damit das Klima geschützt werden. Welchen Effekt das EEG tatsächlich für den Klimaschutz hat, haben Prof. Dr. Grischa Perino und Dr. Johannes Jarke vom Fachbereich Sozialökonomie der Universität Hamburg untersucht. Sie kommen zu dem Schluss, dass angesichts des europäischen Treibhausgas-Handelssystems (EU ETS) die Treibhausgasemissionen durch das EEG sogar steigen können.

Durch das EEG soll laut Bundeswirtschaftsministerium der Anteil erneuerbarer Energien von derzeit rund 32 Prozent auf 40 bis 45 Prozent im Jahr 2025 und auf 55 bis 60 Prozent im Jahr 2035 steigen. In ihrem Klimaschutzplan hat sich die Bundesregierung außerdem verpflichtet, die Treibhausgasemissionen bis 2050 im Vergleich zu 1990 um 80 bis 95 Prozent zu vermindern. Doch durch das europäische Emissionshandelssystem (EU ETS) ist die Obergrenze an Treibhausgasemissionen verbindlich festgelegt. Das EU ETS erfasst europaweit rund 12.000 Anlagen der Energiewirtschaft und der energieintensiven Industrie sowie alle innereuropäischen Flüge. Die Betreiber der Anlagen, die dem EU-ETS unterliegen, müssen für jede ausgestoßene Tonne CO2 ein Zertifikat abgeben. Emissionsrechte, die nicht benötigt werden, werden an andere teilnehmende Unternehmen verkauft oder für die Zukunft gespart. Eine Reduzierung der Emissionen in der deutschen Stromerzeugung verschiebt die Emissionen also lediglich an eine andere Stelle. Das hat auch das Gutachten Anfang Februar 2017 vorgestellte Gutachten des Wissenschaftlichen Beirats des Bundeswirtschaftsministeriums noch einmal betont.

Die Hamburger Forscher zeigen in ihrer gerade im „Journal of Environmental Economics and Management“ erschienenen Studie: Werden die erneuerbaren Energien durch einen Aufschlag auf den Strompreis finanziert, wie dies in Deutschland mit der EEG-Umlage der Fall ist, können die Treibhausgasemissionen insgesamt sogar steigen. Der Grund: Für Verbraucherinnen und Verbraucher ist Strom durch die Energiewende deutlich teurer geworden, so dass sie vermehrt fossile Energieträger in Bereichen nutzen, die nicht dem EU ETS unterliegen, und damit die Gesamtemissionen erhöhen. Eine Finanzierung der Energiewende über das Steuersystem würde diesen Effekt vermeiden.

Professor Perino: „Der Ausbau erneuerbarer Energien im Stromsektor ist ein zentraler Bestandteil der Energiewende und damit der Klimapolitik der Bundesregierung. Intuitiv erscheint das sehr sinnvoll. Auf den zweiten Blick sind die Zusammenhänge aber deutlich komplexer. Insbesondere die Wechselwirkungen mit dem Emissionshandel stellen derzeit so manche Intuition auf den Kopf. Eine regelgebundene Flexibilisierung der Emissionsobergrenze im Emissionshandel, wie auch vom Umweltbundesamt und dem Wissenschaftlichen Beirat des Bundeswirtschaftsministeriums gefordert, ist daher für die Klimawirkung des EEG entscheidend.“

Originalartikel: Do Renewable Energy Policies Reduce Carbon Emissions? On Caps and Inter-Industry Leakage”. Journal of Environmental Economics and Management, DOI: 10.1016/j.jeem.2017.01.004

Schauen Sie hierzu auch ein Video, in dem Prof. Perino seine Ergebnisse weiter erläutert.

Immer deutlicher wird, dass man sich mit der übereilten Energiewende in gefährliches Gelände vorgewagt hat. Dies zeigt auch ein Vorfall vom 24. Januar 2017 als das deutsche Stromnetz erneut am Rande des Zusammenbruchs stand. Der Grund dafür war die klägliche Leistung von Windkraftanlagen und Solarstromerzeugern, die zusammen eine sogenannte Dunkelflaute erlitten – ein im Winter nicht seltener Zustand, in dem die riesenhafte gemeinsame installierte Leistung von 83.900 MW auf praktisch Null – wie 20 oder 30 MW von WKA in ganz Deutschland – zusammenschrumpft. Lesen Sie hierzu den Beitrag “24. Januar 2017 – Der Tag, an dem Merkels Energie­wende auf der Kippe stand” von Günter Keil auf EIKE.

Weite Teil der deutschen Landschaft sind mittlerweile mit Windkraftanlagen zugespargelt. Möglich gemacht wurde dies durch üppige staatliche Subventionen. Die laufen jedoch in ein paar Jahren aus. Der Rückbau der Stahlkolosse ist daher wohl nur eine Frage der Zeit. Was aufgebaut wurde, kann auch wieder abgebaut werden. Die Leipziger Volkszeitung berichtete am 16. März 2017:

Jedes dritte Windrad in Sachsen hat bald ausgedient
Hunderte Windräder in Sachsen und Thüringen könnten bald aus der Landschaft verschwinden. Ab Ende 2020 wird für Anlagen, die seit 20 Jahren in Betrieb sind, keine Einspeisevergütung mehr gezahlt. Weil ihr Betrieb laut Windenergieverband BWE dann unrentabel werde, droht in den meisten Fällen der Abriss. Gegen die anhaltende Flaute bei der Wind-energienutzung laufen Sachsens Grüne jetzt Sturm. Bundesweit sind rund 6000 Altanlagen betroffen, wie eine Deutsche Windguard-Studie im Auftrag der Naturstrom AG belegt. In den Folgejahren stünden weitere 1600 Rückbauten pro Jahr an.

Weiterlesen in der Leipziger Volkszeitung

Beim Klimaretter macht man sich bereits große Sorgen.  Jörg Staude beklagte am 2. März 2017:

Strompreis legt ab 2020 Windkraft still
Zufall oder Absicht? Am Aschermittwoch wird in Berlin eine Studie vorgestellt, laut der nach 2020 bis zu einem Drittel der Windkraft-Kapazität die Abschaltung droht, falls der Strompreis an der Börse so bleibt und es keine politischen Gegenmaßnahmen gibt.

Weiterlesen auf klimaretter.info.

Björn Peters vom Deutschen Arbeitgeber Verband schaute über die nationale Grenze hinüber und entdeckte in China einen Trend, der Magengrummeln verursacht. Sein Beitrag vom 20. März 2017:

Warum stoppt China den Ausbau von Windkraft?
Eine Meldung Ende Februar auf china.org.cn ließ die Fachwelt aufhorchen:  China hat den weiteren Ausbau der Windkraft in sechs wichtigen Provinzen vorerst gestoppt.  Die Förderung erneuerbarer Energien hat auch in China einen sehr hohen Stellenwert, daher lohnt ein näherer Blick auf die Umstände dieser Entscheidung. [...] Nach den Pressemeldungen war der Ausbaustopp eine Reaktion auf die geringe Nutzbarkeit des Windstroms.  Traurige Rekordhalter waren die Anlagen in Gansu in Zentralchina.  Dort konnten nur 57 % der durch Windenergieanlagen im Jahr 2016 produzierten Energie auch genutzt werden.  In der sehr großen Provinz Xinjiang im Nordwesten Chinas waren es 62 %, in den beiden benachbarten Provinzen Jilin und Heilongjiang im Nordosten Chinas waren es 70 % und 81 %, in der Inneren Mongolei, eine große Provinz im Norden Chinas immerhin 79 %.  Insgesamt blieben im Jahr 2016 fast 50 TWh an Windstrom ungenutzt, im Jahr davor bereits 34 TWh.  Dass so viel Energie quasi weggeworfen werden musste, liegt vordergründig am immer noch nicht ausreichenden Leitungsbau zwischen den entlegenen Provinzen mit hohem Windaufkommen und den industriellen Zentren.  Dahinter verbirgt sich aber ein tieferes Problem der Windenergie, das hier dank der besseren Datenlage anhand der deutschen Windstromproduktion skizziert wird. 

Ganzen Beitrag auf deutscherarbeitgeberverband.de lesen. Zur Meldung auf china.org.cn geht es hier.

Und abschließend wieder eine Nachricht, die hoffnungsfroh stimmt. Kann schon bald im großen Maßstab Treibstoff aus CO2 gewonnen werden, sozusagen Gold aus Stroh? Pressemitteilung der Duke University vom 23. Februar 2017 (via Science Daily):

Light-driven reaction converts carbon dioxide into fuel: Illuminated rhodium nanoparticles catalyze key chemistry

Duke University researchers have developed tiny nanoparticles that help convert carbon dioxide into methane using only ultraviolet light as an energy source.

Having found a catalyst that can do this important chemistry using ultraviolet light, the team now hopes to develop a version that would run on natural sunlight, a potential boon to alternative energy. Chemists have long sought an efficient, light-driven catalyst to power this reaction, which could help reduce the growing levels of carbon dioxide in our atmosphere by converting it into methane, a key building block for many types of fuels. Not only are the rhodium nanoparticles made more efficient when illuminated by light, they have the advantage of strongly favoring the formation of methane rather than an equal mix of methane and undesirable side-products like carbon monoxide. This strong “selectivity” of the light-driven catalysis may also extend to other important chemical reactions, the researchers say. “The fact that you can use light to influence a specific reaction pathway is very exciting,” said Jie Liu, the George B. Geller professor of chemistry at Duke University. “This discovery will really advance the understanding of catalysis.” The paper appears online Feb. 23 in Nature Communications.

Despite being one of the rarest elements on Earth, rhodium plays a surprisingly important role in our everyday lives. Small amounts of the silvery grey metal are used to speed up or “catalyze” a number of key industrial processes, including those that make drugs, detergents and nitrogen fertilizer, and they even play a major role breaking down toxic pollutants in the catalytic converters of our cars. Rhodium accelerates these reactions with an added boost of energy, which usually comes in the form of heat because it is easily produced and absorbed. However, high temperatures also cause problems, like shortened catalyst lifetimes and the unwanted synthesis of undesired products.

In the past two decades, scientists have explored new and useful ways that light can be used to add energy to bits of metal shrunk down to the nanoscale, a field called plasmonics. “Effectively, plasmonic metal nanoparticles act like little antennas that absorb visible or ultraviolet light very efficiently and can do a number of things like generate strong electric fields,” said Henry Everitt, an adjunct professor of physics at Duke and senior research scientist at the Army’s Aviation and Missile RD&E Center at Redstone Arsenal, AL. “For the last few years there has been a recognition that this property might be applied to catalysis.”

Xiao Zhang, a graduate student in Jie Liu’s lab, synthesized rhodium nanocubes that were the optimal size for absorbing near-ultraviolet light. He then placed small amounts of the charcoal-colored nanoparticles into a reaction chamber and passed mixtures of carbon dioxide and hydrogen through the powdery material. When Zhang heated the nanoparticles to 300 degrees Celsius, the reaction generated an equal mix of methane and carbon monoxide, a poisonous gas. When he turned off the heat and instead illuminated them with a high-powered ultraviolet LED lamp, Zhang was not only surprised to find that carbon dioxide and hydrogen reacted at room temperature, but that the reaction almost exclusively produced methane. “We discovered that when we shine light on rhodium nanostructures, we can force the chemical reaction to go in one direction more than another,” Everitt said. “So we get to choose how the reaction goes with light in a way that we can’t do with heat.”

This selectivity — the ability to control the chemical reaction so that it generates the desired product with little or no side-products — is an important factor in determining the cost and feasibility of industrial-scale reactions, Zhang says. “If the reaction has only 50 percent selectivity, then the cost will be double what it would be if the selectively is nearly 100 percent,” Zhang said. “And if the selectivity is very high, you can also save time and energy by not having to purify the product.” Now the team plans to test whether their light-powered technique might drive other reactions that are currently catalyzed with heated rhodium metal. By tweaking the size of the rhodium nanoparticles, they also hope to develop a version of the catalyst that is powered by sunlight, creating a solar-powered reaction that could be integrated into renewable energy systems.

“Our discovery of the unique way light can efficiently, selectively influence catalysis came as a result of an on-going collaboration between experimentalists and theorists,” Liu said. “Professor Weitao Yang’s group in the Duke chemistry department provided critical theoretical insights that helped us understand what was happening. This sort of analysis can be applied to many important chemical reactions, and we have only just begun to explore this exciting new approach to catalysis.”

Paper: Xiao Zhang, Xueqian Li, Du Zhang, Neil Qiang Su, Weitao Yang, Henry O. Everitt, Jie Liu. Product selectivity in plasmonic photocatalysis for carbon dioxide hydrogenation. Nature Communications, 2017; 8: 14542 DOI: 10.1038/NCOMMS14542

 

Großbaustelle Klimamodelle: Probleme mit Pilzen, Bakterien, Boden-CO2 und Regionalmodellierungen

Klimamodelle sollen das Klima der Erde virtuell nachbilden. Dazu müssen alle Prozess in Gleichungen gefasst werden, aus denen der Computer dann den Verlauf in Zeit und Raum berechnet. Die Ergebisse von Klimamodellen bilden die Grundlage für den begonnenen weitreichenden Umbau der Energiesysteme und Gesellschaft. Die Erwärmung der letzten 150 Jahre bekommen die Modelle einigermaßen hin. Der Anstieg des CO2 passt gut zur Erwärmung. Allerdings ist im selben Zeitraum auch die Sonnenaktivität stark angestiegen. Hat sie wirklich nichts mit der Erwärmung zu tun?

Einen Hinweis auf Probleme bei den Klimamodellen gibt die Auswertung von regionalen Entwicklungen. Eigentlich sollten die Modelle die kleinermaßstäblichen Klimaentwicklungen gut bewältigen können, denn die Summe der regionalen Entwicklungen ergibt doch eigentlich die globale Summe. Interessanterweise versagen die Modelle jedoch reihenweise, wenn es um regionale Simulationen geht. Hierauf wies im August 2016 die Penn State University in einer Pressemitteilung noch einmal ausdrücklich hin:

Global climate models do not easily downscale for regional predictions

One size does not always fit all, especially when it comes to global climate models, according to Penn State climate researchers.”The impacts of climate change rightfully concern policy makers and stakeholders who need to make decisions about how to cope with a changing climate,” said Fuqing Zhang, professor of meteorology and director, Center for Advanced Data Assimilation and Predictability Techniques, Penn State. “They often rely upon climate model projections at regional and local scales in their decision making.”

Zhang and Michael Mann, Distinguished professor of atmospheric science and director, Earth System Science Center, were concerned that the direct use of climate model output at local or even regional scales could produce inaccurate information. They focused on two key climate variables, temperature and precipitation.

They found that projections of temperature changes with global climate models became increasingly uncertain at scales below roughly 600 horizontal miles, a distance equivalent to the combined widths of Pennsylvania, Ohio and Indiana. While climate models might provide useful information about the overall warming expected for, say, the Midwest, predicting the difference between the warming of Indianapolis and Pittsburgh might prove futile.

Regional changes in precipitation were even more challenging to predict, with estimates becoming highly uncertain at scales below roughly 1200 miles, equivalent to the combined width of all the states from the Atlantic Ocean through New Jersey across Nebraska. The difference between changing rainfall totals in Philadelphia and Omaha due to global warming, for example, would be difficult to assess. The researchers report the results of their study in the August issue of Advances in Atmospheric Sciences.

“Policy makers and stakeholders use information from these models to inform their decisions,” said Mann. “It is crucial they understand the limitation in the information the model projections can provide at local scales.” Climate models provide useful predictions of the overall warming of the globe and the largest-scale shifts in patterns of rainfall and drought, but are considerably more hard pressed to predict, for example, whether New York City will become wetter or drier, or to deal with the effects of mountain ranges like the Rocky Mountains on regional weather patterns.

“Climate models can meaningfully project the overall global increase in warmth, rises in sea level and very large-scale changes in rainfall patterns,” said Zhang. “But they are uncertain about the potential significant ramifications on society in any specific location.” The researchers believe that further research may lead to a reduction in the uncertainties. They caution users of climate model projections to take into account the increased uncertainties in assessing local climate scenarios. “Uncertainty is hardly a reason for inaction,” said Mann. “Moreover, uncertainty can cut both ways, and we must be cognizant of the possibility that impacts in many regions could be considerably greater and more costly than climate model projections suggest.”

Ein Jahr zuvor hatte bereits die Lund University auf eine große Unsicherheit in den Klimamodellen hingewiesen, die wohl den wenigsten Beobachtern in den Sinn gekommen wäre: Pilze und Bakterien. Diese werden von den gängigen Klimamodellen fundamental falsch dargestellt. Hier die Pressemitteilung vom  28. August 2015:

Future climate models greatly affected by fungi and bacteria
Researchers from Lund University, Sweden, and USA have shown that our understanding of how organic material is decomposed by fungi and bacteria is fundamentally wrong. This means that climate models that include microorganisms to estimate future climate change must be reconsidered.

When a plant dies, its leaves and branches fall to the ground. Decomposition of soil organic matter is then mainly carried out by fungi and bacteria, which convert dead plant materials into carbon dioxide and mineral nutrients. Until now, scientists have thought that high quality organic materials, such as leaves that are rich in soluble sugars, are mainly decomposed by bacteria. Lower quality materials, such as cellulose and lignin that are found in wood, are mainly broken down by fungi. Previous research has also shown that organic material that is broken down by fungi results in a reduced leakage of carbon dioxide and nutrients compared to material decomposed by bacteria. This has consequences for climate models, since more loss of carbon dioxide and mineral nitrogen would have a direct bearing on the soil’s contribution to greenhouse gases and eutrophication.

In a 23-year experiment, researchers from Lund University and USA have examined the relative significance of fungal and bacterial decomposition. “In contrast with expectations, there was no evidence that high quality organic material was mainly broken down by bacteria. In fact, the data strongly suggested the contrary”, says Johannes Rousk, researcher in Microbial Ecology at Lund University in Sweden. “There was also no evidence to suggest that organic material broken down by fungi reduced the leakage of carbon dioxide into the atmosphere, or the leakage of nutrients. Once again, the results tended to suggest the contrary”, says Johannes Rousk. The results could have consequences not only for future climate models, but may also impact current policies on land use intended to promote fungi. This may be based on flawed assumptions regarding the fungal role in reducing negative environmental effects.

Publication: Revisiting the hypothesis that fungal-to-bacterial dominance characterizes turnover of soil organic matter and nutrients

Die großen Unsicherheiten in den Klimamodellen hinsichtlich des CO2-Haushalts im Boden sind auch Thema einer Pressemitteilung der Yale University vom 1. August 2016:

Managing Uncertainty: How Soil Carbon Feedbacks Could Affect Climate Change

A new Yale-led paper makes the case that developing meaningful climate projections depends upon a better understanding of the role of “soil carbon turnover.”

There is more than twice as much carbon in the planet’s soils than there is in its atmosphere, so the loss of even a small proportion of that could have a profound feedback effect on the global climate. Yet in its most recent report, in 2013, the Intergovernmental Panel on Climate Change (IPCC) used models that paid less attention to soil carbon potentially entering the atmosphere than had earlier reports, concluding that there simply wasn’t enough evidence about how warmer global temperatures might impact soil carbon stocks.

A new Yale-led paper makes the case that developing meaningful climate projections will rely on understanding the role of “soil carbon turnover” and how it might potentially trigger climate feedbacks in a warming world. Writing in the journal Nature Climate Change, a team of scientists calls for more collaboration between modelers and soil scientists to improve the scientific understanding of the mechanisms that control the creation, stabilization, and decomposition of carbon in the soil. That in turn will promote the kinds of experiments that will begin to remove uncertainties about the competing mechanisms that drive soil carbon stocks, the researchers write.

While scientists might never eliminate all uncertainty when it comes to evaluating the mechanisms driving changes in soil carbon stocks, new research advances are making it possible to predict the full range of potential outcomes, said Mark Bradford, an Associate Professor of Terrestrial Ecosystem Ecology at the Yale School of Forestry & Environmental Studies (F&ES) and lead author of the study. And that, he says, will increase confidence. “There is so much discussion of uncertainty in the public debate about climate change that the term now seems ambiguous and politically loaded,” Bradford said. “The discussion should not be about how much uncertainty there is, but rather about how much confidence we have that the real planetary response lies somewhere in the range of projected uncertainty.”  “You gain scientific confidence by representing the best — and sometimes polar opposite — ideas about the how the world works in your models. If someone tells you they have high confidence that something will happen, you can then take actions based on the best knowledge available.”

Warming temperatures can trigger two very different changes in soil carbon soil levels. On the one hand, they can stimulate the growth of plants, increasing the amount of carbon storage potential. Conversely, those higher temperatures can also accelerate the activity of organisms that live in the soil and consume decaying plant matter. In that case, there is a net increase in the amount of carbon released from the biosphere into the atmosphere. In other words, one function puts carbon into the soil, keeping it out of the atmosphere, while the other emits it into the atmosphere. The twist, however, is that the processes that emit carbon from the soil also convert a small fraction of the decaying plant matter into stores of carbon that can be locked away over millennial timescales, which would be optimal to minimizing climate impacts.

While scientists have made great advances in understanding how plants will respond, their ability to evaluate how much carbon goes into the soil, and where it ends up, is made difficult because it’s not possible to measure directly. “In the soil, we don’t know how things are working because, if you like, it’s as clear as mud,” Bradford said. “Often we can’t measure what we’re trying to measure because we can’t see the organisms. You have millions of individual microbes — from thousands of cryptic species — in just a handful of soil.” For these reasons, he said, much of the understanding of how soil carbon stocks will respond to warming is based only on the outputs, which is like trying to calculate the balance of a bank account based simply on how much money is being withdrawn.

Another complicating factor is that our knowledge of how soil carbon is created and stabilized is undergoing somewhat of a conceptual revolution, and only one set of ideas is represented in the climate models, the new paper says. For decades scientists assumed that carbon entering the soil through materials that are harder to “digest” by microbes — like, say, wood — would be more likely to remain in the soil longer. In recent years, however, there has emerged a growing consensus that carbon is more likely to remain in the soil if it enters through more digestible plant matter — a cloverleaf, for instance. “The science has flipped,” Bradford said. “The harder it is to digest initially the less of it stays in the soil, whereas the easier it is to be eaten then the more of it stays in the soil.” This is important because it’s the easily digestible plant matter — such as the sugars released from plant roots into the soil — that likely eventually get converted into the long term stores of soil carbon but they are also the hardest inputs to quantify.

This growing awareness shifts the way scientists view ecosystem management, from thinking about the biomass that you can see aboveground to a focus on thinking about the amount of carbon that can be pumped belowground directly through the roots of the plants and to the organisms in the soils. Ultimately, Bradford says, it will be impossible to eliminate all uncertainty. But that, he says, is not such a bad thing. “By increasing our real understanding, we might even end up making our climate projections more uncertain, in terms of a greater range in the extent the planet might warm,” he said. “But we’ll be more confident that the true answer falls within that range.” “Advancing our confidence and taking necessary actions will ultimately require that we embrace uncertainty as a fact of life.”

 

Wird die CO2-Verweildauer in der Atmosphäre überschätzt?

Der CO2-Gehalt der Erdathmosphäre ist mittlerweile auf einen Stand geklettert, der alle Werte der letzten 800.000 Jahre übertrifft (Abb. 1). Während der Eiszeiten sank die CO2-Konzentration bis auf 180 ppm ab, während er in den dazwischenliegenden Warmzeiten (Interglazialen) auf 250-300 ppm hinaufkletterte. Grund für diese CO2-Entwicklung ist vor allem das Ausgasen des CO2 aus dem wärmernen Interglazial-Wasser. Seit Beginn der Industriellen Revolution stieg der CO2-Wert jedoch auf Werte deutlich oberhalb der typischen Warmzeit-Spannweite. Aktuell besitzt die Atmosphäre einen CO2-Anteil von etwas mehr als 400 ppm.

Abbildung 1: CO2-Verlauf der letzten 800.000 Jahre. Quelle: Scripps Institution of Oceanography, via Climate Central.

 

Die große Frage ist nun, wie lange die Natur wohl brauchen würde, bis der antrhopogene CO2-Berg wieder abgebaut ist, sofern die CO2-Emissionen stark zurückgefahren werden könnten. Nehmen wir einmal an, von heute auf morgen würden Kohle, Öl und Gas verboten werden. In wievielen Jahren wäre der CO2-Überschuss vom natürlichen Kreislauf aufgenommen und aus der Atmosphäre verschwunden sein? Der 5. IPCC-Bericht schreibt hier, dass nach 1000 Jahren 85-60% des anthropogenen CO2 aus der Atmosphäre wieder verschwunden wären. Der vollständig Abbau würde aber mehrere hunderttausend Jahre dauern. In Kapitel 6 der Arbeitsgruppe 1 heißt es dazu:

The removal of human-emitted CO2 from the atmosphere by natural processes will take a few hundred thousand years (high confidence). Depending on the RCP scenario considered, about 15 to 40% of emitted CO2 will remain in the atmosphere longer than 1,000 years. This very long time required by sinks to remove anthropogenic CO2 makes climate change caused by elevated CO2 irreversible on human time scale.

Laut Umweltbundesamt (UBA) geht es aber auch schneller. Auf der UBA-Webseite wird angegeben:

Kohlendioxid ist ein geruch- und farbloses Gas, dessen durchschnittliche Verweildauer in der Atmosphäre 120 Jahre beträgt.

Von einem ähnlichen Wert geht auch Mojib Latif aus: Infranken.de berichtete am 13. Januar 2016 über einen Latif-Vortrag im Rahmen einer Lions-Club-Veranstaltung:

“100 Jahre bleibt CO2 in der Luft”
Der Klimaforscher Professor Mojib Latif machte als Gastredner beim Neujahresempfang des Lions-Clubs auf den Klimawandel aufmerksam. [...] “Wenn wir CO2 in die Luft blasen, dann bleibt das da 100 Jahre”, so Latif.

Hermann Harde von der Helmut-Schmidt-University Hamburg beschreibt in einer Arbeit, die im Mai 2017 im Fachblatt Global and Planetary Change erscheint und bereits vorab online verfügbar ist, einen neuen Ansatz, der Hinweise auf eine viel kürzere CO2-Verweildauer in der Atmosphäre liefert. Laut Harde bleibt das überschüssige CO2 im Durchschnitt lediglich 4 Jahre in der Luft:

Scrutinizing the carbon cycle and CO2 residence time in the atmosphere
Climate scientists presume that the carbon cycle has come out of balance due to the increasing anthropogenic emissions from fossil fuel combustion and land use change. This is made responsible for the rapidly increasing atmospheric CO2 concentrations over recent years, and it is estimated that the removal of the additional emissions from the atmosphere will take a few hundred thousand years. Since this goes along with an increasing greenhouse effect and a further global warming, a better understanding of the carbon cycle is of great importance for all future climate change predictions. We have critically scrutinized this cycle and present an alternative concept, for which the uptake of CO2 by natural sinks scales proportional with the CO2 concentration. In addition, we consider temperature dependent natural emission and absorption rates, by which the paleoclimatic CO2 variations and the actual CO2 growth rate can well be explained. The anthropogenic contribution to the actual CO2 concentration is found to be 4.3%, its fraction to the CO2 increase over the Industrial Era is 15% and the average residence time 4 years.

Dieser Wert ist nicht zu verwechseln mit der Verweildauer von einzelnen CO2-Molekülen in der Atmosphäre. Hier herrscht weitgehend Einigkeit, dass die Moleküle selber nur einige Jahre in der Luft bleiben, bevor sie mit CO2 aus dem Meerwasser im Sinne einer Gleichgewichtsreaktion ausgetauscht werden.

 

 

 

Hartmut Heinrich – Ein Pionier der Paläoklimawissenschaften

Die natürliche Klimavariabilität dokumentieren und verstehen, das wäre eine der Hauptaufgaben der modernen Klimawissenschaften. Der deutsche Meeresgeologe und Klimatologe Hartmut Heinrich war seiner Zeit weit voraus. Bereits Ende der 1980er Jahre hat er in Meeressedimenten ein wiederkehrendes Klimasignal entdeckt, die nach ihm benannten sogenannten Heinrich-Ereignisse. Wikipedia beschreibt:

Heinrich-Ereignisse beschreiben Perioden beschleunigter Eisvorstöße (englisch Ice flow surges) und deren Abfluss ins Meer. Die Ereignisse wurden aufgrund von Beobachtungen eines verstärkten Sedimenteintrages kontinentalen Ursprunges in jungpleistozänen Sedimentlagen am Meeresboden postuliert. Diese Sedimentlagen werden auch als Heinrich-Lagen oder IRD (englisch ice rafted debris oder ice rafted deposit) bezeichnet.[1] Aufgrund der groben Sedimentfraktion erscheint ein Transport durch Meeresströmungen unwahrscheinlich, als Transportmedium dürften daher vielmehr Eisberge/-schollen in Frage kommen.

Heinrich-Ereignisse wurden im Jahr 1988 erstmals von Hartmut Heinrich erwähnt und bisher nur für die letzte Kaltzeit nachgewiesen. Bei diesen Ereignissen brachen große Mengen an Eisbergen von den vorrückenden Gletschermassen ab und drifteten über den Nordatlantik. Die Eisberge führten Sedimente mit sich, die durch die Gletschertätigkeit abgetragen und inkorporiert worden waren; durch das Schmelzen der Eisberge fiel dieses von Eisbergen verschleppte Material auf den Meeresboden.

Das Schmelzen der Eisberge führte zu einer erhöhten Süßwasserzufuhr in den Nordatlantik. Dieser Zustrom an kaltem Süßwasser hat wahrscheinlich die dichtegetriebenen thermohalinen Zirkulationsmuster des Ozeans verändert. Die Ereignisse fallen oft mit Hinweisen auf globale Klimaschwankungen zusammen.

Weiterlesen auf Wikipedia.

Hans von Storch und Kay Emeis haben kürzlich ein spannendes Interview mit dem Klimapionier geführt. Absolut lesenswert. Das pdf des Interview finden Sie auf academia.edu. Leider kehrte Hartmut Heinrich der Wissenschaft früh den Rücken. In der von Klimamodellierern dominierten Klimawelt bräuchten wir heute mehr Forscher vom Typus Heinrich.

 

Philipp Blom: Die Kleine Eiszeit

Im Februar 2017 erschien ein neues Buch von Philip Blom zur Kleinen Eiszeit:

Die Welt aus den Angeln: Eine Geschichte der Kleinen Eiszeit von 1570 bis 1700 sowie der Entstehung der modernen Welt, verbunden mit einigen Überlegungen zum Klima der Gegenwart

Eine Rezension des Buches erschien am 10. März 2017 in der Welt von Christoph Arens:

Plötzlicher Klimawandel Vor 330 Jahren war ganz Europa ein eisiges Reich
Lange Winter und kurze, kühle Sommer: Im 17. Jahrhundert änderte sich das Klima in Europa dramatisch. Hungersnöte waren die Folge. Der Historiker Philipp Blom hat erforscht, wie der Kontinent die „Kleine Eiszeit“ überlebte.

Was passiert in einer Gesellschaft, wenn sich das Klima ändert? Wer stirbt, wer überlebt? Was bricht zusammen, und was wächst? „Es wirkt wie ein sadistisches Experiment“, erdacht von einem „böswilligen Dämon oder einem außerirdischen Wissenschaftler, ein Tierversuch mit ganzen Gesellschaften“, schreibt der Historiker Philipp Blom in seinem neuen Buch „Die Welt aus den Angeln.“

Weiterlesen in der Welt

———————-

Peter Heller am 25. Februar 2017 in Tichys Einblick:

Fakten statt Dogmen: Klimakatastrophe in der Krise
Mit einer Podiumsdiskussion wollte die VolkswagenStiftung zu mehr Klimaschutzanstrengungen aufrufen. Das aber scheiterte kläglich. Ein Veranstaltungsbericht.

Nach neunzig Minuten war für Bettina Münch-Epple die Grenze des Erträglichen überschritten. Unübersehbar hatte sich in ihr bis dahin viel verwirrte Verzweiflung aufgestaut, die schließlich in eine nur mühsam kaschierte Publikumsbeschimpfung mündete. Die Verärgerung der Leiterin der Bildungskommunikation des WWF Deutschland entstand, weil der Verlauf des Abends so gar nicht dem Plan des Veranstalters entsprach.

Unter dem Titel „Klimaschutz ade? Wie kann die Gesellschaft mobilisiert werden?“ wollte die von dem gleichnamigen Konzern unabhängige VolkswagenStiftung eigentlich darüber diskutieren lassen, warum denn gegen den „kommenden Klimawandel“ trotz der „düsteren Vorhersagen“ der Wissenschaft nichts getan würde.

Die mit apokalyptischen Bildern gefüllte Ankündigung vermittelte deutlich das Bestreben, über die Gleichsetzung von „Klimawandel“ mit „Klimakatastrophe“ unter dem tarnenden Überbau einer wissenschaftlichen Debatte Volkserziehung zu betreiben. Als aber der offensichtlich zum Zweck der seriösen Untermauerung „dramatischer Befunde“ geladene Klimaforscher Hans von Storch seinen Impulsvortrag mit dem Satz begann, er wäre nicht gekommen, um irgendwen zu mobilisieren, flog ihm die Sympathie der gut einhundertfünfzig Zuhörer spürbar zu. Seine weiteren Ausführungen ließen dann auch der Auffassung Raum, der Stand des Wissens sei wohl doch nicht so besorgniserregend, was viele Gäste, erkennbar am Beifall, mit Genugtuung zur Kenntnis nahmen.

Weiterlesen auf Tichys Einblick

 

Klimamodelle auf dem Prüfstand

Klimamodelle wurden vor zwanzig Jahren als der große Durchbruch gefeiert. Endlich konnte man die Realität im Computer nachvollziehen. Immer größer und schneller wurden die Rechner. Man glaubte fest daran, dass man nur noch i-Tüpfelchen justieren müsste und kurz vor dem Ziel war. Als dann aber die Rechenergebnisse mit der Realität verglichen wurden, ergaben sich riesige unerklärliche Diskrepanzen. Parallel dazu erarbeiteten Paläoklimatologen eine immer robustere Rekonstruktion des realen Klimaverlaufs, was die Probleme sogar noch offensichtlicher machte. Im Monatsabstand erscheinen heute Papers, die auf die schwerwiegenden Probleme der Klimamodellier hinweisen. Tests werden bevorzugt in der Mitte der Kleinen Eiszeit um 1800 begonnen, da dann die Erwärmung der letzten 200 Jahre so schön zum CO2-Anstieg passt. Geht man dann aber auf die letzten 1000 Jahre zurück, versagt die Technik.

Fabius Maximus wies im März 2016 auf das Offensichtliche hin: Die Modelle müssen viel schärfer getestet und kalibriert werden, bevor sie für Zukunftsmodellierungen freigegeben werden:

We can end the climate policy wars: demand a test of the models
[...] The policy debate turns on the reliability of the predictions of climate models. These can be tested to give “good enough” answers for policy decision-makers so that they can either proceed or require more research. I proposed one way to do this in Climate scientists can restart the climate change debate & win: test the models!— with includes a long list of cites (with links) to the literature about this topic. This post shows that such a test is in accord with both the norms of science and the work of climate scientists. [...] Models should be tested vs. out of sample observations to prevent “tuning” the model to match known data (even inadvertently), for the same reason that scientists run double-blind experiments). The future is the ideal out of sample data, since model designers cannot tune their models to it. Unfortunately…

“…if we had observations of the future, we obviously would trust them more than models, but unfortunately observations of the future are not available at this time.”
— Thomas R. Knutson and Robert E. Tuleya, note in Journal of Climate, December 2005.

There is a solution. The models from the first four IPCC assessment reports can be run with observations made after their design (from their future, our past) — a special kind of hindcast.

Ein anderer großer Kritikpunkt an den Kimamodellen ist das sogenannte Tuning. Hier werden die Klimamodelle so justiert, das sie möglichst nah an das gewünschte Ergebnis herankommen. Dies geschieht meist hinter verschlossenen Türen im dunklen Kämmerlein und leidet unter fehlender Transparenz. Hourdin et al. 2016 haben das Problem in einem Übersichtspaper ausführlich beschrieben. Judith Curry empfiehlt die Abhandlung wärmstens.

Two years ago, I did a post on Climate model tuning,  excerpts: “Arguably the most poorly documented aspect of climate models is how they are calibrated, or ‘tuned.’ I have raised a number of concerns in my Uncertainty Monster paper and also in previous blog posts.The existence of this paper highlights the failure of climate modeling groups to adequately document their tuning/calibration and to adequately confront the issues of introducing subjective bias into the models through the tuning process.”

Think about it for a minute. Every climate model manages to accurately reproduce the 20th century global warming, in spite of the fact that that the climate sensitivity to CO2 among these models varies by a factor of two. How is this accomplished? Does model tuning have anything to do with this?

Ganzen Beitrag auf Climate Etc. lesen.

Im November 2016 beschrieb Paul Voosen im angesehenen Fachblatt Science die Notwendigkeit, die Geheimniskrämerei zu beenden und die Black Boxes im Sinne der Transparenz für die Öffentlichkeit zu öffnen:

Climate scientists open up their black boxes to scrutiny
Climate models render as much as they can by applying the laws of physics to imaginary boxes tens of kilometers a side. But some processes, like cloud formation, are too fine-grained for that, and so modelers use “parameterizations”: equations meant to approximate their effects. For years, climate scientists have tuned their parameterizations so that the model overall matches climate records. But fearing criticism by climate skeptics, they have largely kept quiet about how they tune their models, and by how much. That is now changing. By writing up tuning strategies and making them publicly available for the first time, groups hope to learn how to make their predictions more reliable—and more transparent.

 

Sonne macht Klima: Spanien und Portugal

Beeinflusst die Sonne das Klima? Im heutigen Beitrag wollen wir neue Studien aus Spanien und Portugal vorstellen, die hier Licht ins Dunkel bringen. Im Februar 2017 erschien in Climate of the Past eine Baumring-Studie einer Gruppe um Ernesto Tejedor, in der eine Temperaturrekonstruktion für die Iberische Halbinsel für die vergangenen 400 Jahre vorgestellt wird. Die Autoren heben hervor, dass die Temperaturschwankungen recht gut mit den Schwankungen der Sonnenaktivität zusammenpassen. Warme Phasen gehen dabei mit Zeiten erhöhter Sonnenaktivität einher. Insgesamt hat sich das Untersuchungsgebiet in diesen 400 Jahren um fast 3°C erwärmt, was den Übergang von der Kleinen Eiszeit zur Modernen Wärmeperiode widerspiegelt (Abb.). Allerdings gab es bereits um 1625 und 1800 Phasen, als die Temperaturen für kurze Zeit das heutige Niveau erreichten.

Abbildung: Temperaturentwicklung im Gebirgszug Nordspanien während der letzten 400 Jahre und Vergleich mit der Sonnenaktivität. Quelle: Tejedor et al. 2017.

 

Hier der Abstract der Studie:

Temperature variability in the Iberian Range since 1602 inferred from tree-ring records
Tree rings are an important proxy to understand the natural drivers of climate variability in the Mediterranean Basin and hence to improve future climate scenarios in a vulnerable region. Here, we compile 316 tree-ring width series from 11 conifer sites in the western Iberian Range. We apply a new standardization method based on the trunk basal area instead of the tree cambial age to develop a regional chronology which preserves high- to low-frequency variability. A new reconstruction for the 1602–2012 period correlates at −0.78 with observational September temperatures with a cumulative mean of the 21 previous months over the 1945–2012 calibration period. The new IR2Tmax reconstruction is spatially representative for the Iberian Peninsula and captures the full range of past Iberian Range temperature variability. Reconstructed long-term temperature variations match reasonably well with solar irradiance changes since warm and cold phases correspond with high and low solar activity, respectively. In addition, some annual temperature downturns coincide with volcanic eruptions with a 3-year lag.

Weiter gehts in Portugal. Anna Morozova und Tatiana Barlyaeva analysierten den Temperaturverlauf der letzten 100 Jahre in Lissabon, Coimbra und Porto. Dabei stießen sie auf ein schwaches aber statistisch gut abgesichertes Signal der 11- und 22-jährigen Sonnenzyklen in den Temperaturdaten. Im Haupttext ihrer Arbeit heißt es dazu:

Weak but statistically significant (bi-)decadal signals in the temperature series that can be associated with the solar and geomagnetic activity variations were found. These signals are stronger during the spring and autumn seasons. The multiple regression models which include the sunspot numbers or the geomagnetic indices among other regressors have higher predictionquality. The wavelet coherence analysis shows that there are time lags between the temperature variations and the solar activity cycles. These lags are about 1–2 years in case of the 11-yr solar cycle as well as in case of the 22-yr solar magnetic cycle (relatively to the solar polar magnetic field observations). These lags are confirmed by the correlation analysis. The results obtained by these methods as well as comparison to results of other studies allow us to conclude that the found (bi-)decadal temperature variability modes can be associated, at least partly, with the effect of the solar forcing.

Bleiben wir in Portugal, gehen aber auf den weiten Atlantischen Ozean hinaus. Die Inselgruppe der Azoren spielt eine wichtige Rolle im westeuropäsichen Westtergeschehen. Im November 2016 ging eine Gruppe um Roy et al. im Journal of Atmospheric and Solar-Terrestrial Physics der Frage nach, ob bei der Ausprägung des berühmten Azoren-Hoch vielleicht die Sonnenaktivität eine Rolle spielen könnte. Ein solarer Einfluss auf diese wichtige Wettermaschine wäre bedeutsam. Und in der Tat stellten die Autoren eine signifikante Kopplung des Azorenhochs an die Sonnenaktivität fest. Sichtbar wird der Zusammenhang vor allem, wenn man die verschiedenen solaren Akivitätskennziffern berücksichtigt, nicht nur die meist verwendeten Sonnenflecken. Es wird immer klarer, dass das solare Magnetfeld eine mindestens ebenso wichtige Rolle spielt, was auch im Fall der Azoren den Durchbruch brachte. Zudem müssen zeitliche Verzögerungseffekte von 1-2 Jahren eingerechnet werden. Das Klimasystem ist träge und springt nicht gleich über jedes Stöckchen das man ihm hinhält. Manchmal dauert es ein wenig, bis sich das System an den externen Signalgeber orientiert und anpasst. Hier der Abstract der spannenden Studie:

Comparing the influence of sunspot activity and geomagnetic activity on winter surface climate
We compare here the effect of geomagnetic activity (using the aa index) and sunspot activity on surface climate using sea level pressure dataset from Hadley centre during northern winter. Previous studies using the multiple linear regression method have been limited to using sunspots as a solar activity predictor. Sunspots and total solar irradiance indicate a robust positive influence around the Aleutian Low. This is valid up to a lag of one year. However, geomagnetic activity yields a positive NAM pattern at high to polar latitudes and a positive signal around Azores High pressure region. Interestingly, while there is a positive signal around Azores High for a 2-year lag in sunspots, the strongest signal in this region is found for aa index at 1-year lag. There is also a weak but significant negative signature present around central Pacific for both sunspots and aa index. The combined influence of geomagnetic activity and Quasi Biannual Oscillation (QBO 30 hPa) produces a particularly strong response at mid to polar latitudes, much stronger than the combined influence of sunspots and QBO, which was mostly studied in previous studies so far. This signal is robust and insensitive to the selected time period during the last century. Our results provide a useful way for improving the prediction of winter weather at middle to high latitudes of the northern hemisphere.

 

Sonne macht Klima: Elfjähriger Sonnenzyklus beeinflusst das Wetter in Mitteleuropa

Immer wieder heißt es: Die Sonne kann nichts, sie wäre klimatisch nahezu wirkungslos, ein zahnloser Tiger. Diese Behauptung des IPCC steht im krassen Gegensatz zur Mehrheit der Forscher, die dieses Feld beackern. In hunderten von Publikationen und Fallstudien haben sie die Klimawirkung der Sonne eindrucksvoll belegt und stoßen bei den IPCC-Managern auf taube Ohren. Im heutigen Beitrag wollen wir uns neue Studien aus Europa vornehmen.

Im Januar 2017 erschien in Geology ein Artikel von Ludwig Luthardt und Ronny Rößler. Sie untersuchten Baumringe an einem fossilen Stumpf aus der Perm-Zeit (290 Millionen Jahre vor unserer Zeit) in einem Wald bei Chemnitz und fanden ein bemerkenswertes Muster: Die Dicke der Ringe pulsierte im 11-Jahrestakt. Dieser Rhythmus ist allen Paläoklimatologen bestens bekannt. Es ist der Schwabe-Zyklus, der kürzeste aller Sonnenzyklen. Sonne macht Klima! Hier der Abstract der Arbeit:

Fossil forest reveals sunspot activity in the early Permian
Modern-day periodic climate pattern variations related to solar activity are well known. High-resolution records such as varves, ice cores, and tree-ring sequences are commonly used for reconstructing climatic variations in the younger geological history. For the first time we apply dendrochronological methods to Paleozoic trees in order to recognize annual variations. Large woody tree trunks from the early Permian Fossil Forest of Chemnitz, southeast Germany, show a regular cyclicity in tree-ring formation. The mean ring curve reveals a 10.62 yr cyclicity, the duration of which is almost identical to the modern 11 yr solar cycle. Therefore, we speculate and further discuss that, like today, sunspot activity caused fluctuations of cosmic radiation input to the atmosphere, affecting cloud formation and annual rates of precipitation, which are reflected in the tree-ring archive. This is the earliest record of sunspot cyclicity and simultaneously demonstrates its long-term stable periodicity for at least 300 m.y.

Nun könnte man sagen, naja, das war vor 290 Millionen Jahren. Die klimabeeinflussende Fähigkeit hat die Sonne doch mittlerweile sicher verloren. Eine neue Arbeit von Mikhaël Schwander und Kollegen zeigt, dass diese Annahme grundsätzlich falsch ist. Der 11 jährige Sonnenzyklus hat auch in den letzten 250 Jahren das mitteleuropäische Wettergeschehen nachdrücklich mitgeprägt, wie die Auswertung von historischen Wetteraufzeichnungen zeigt. Während solarer Schwächephasen werden Westwinde über Mitteleuropa typischerweise seltener, und es treten vermehrt Winde aus nördlichen und östlichen Richtungen auf. Gleichzeitig gibt es mehr blockierte Wetterlagen im Bereich von Island und Skandinavien. Insgesamt läßt eine schwache Sonne die spätwinterlichen Temperaturen in Europa absinken. Die Autoren verglichen die von ihnen identifizierten Zusammenhänge mit den Ergebnissen von Klimamodellen und stellten fest, dass die Modell die Realität und empirisch belegten klimatischen Einfluss der Sonnenzyklik nicht nachvollziehen können. Die bemerkenswerte Studie erschien im Januar 2017 in Climate of the Past Discussions. Hier der Abstract:

Influence of solar variability on the occurrence of Central European weather types from 1763 to 2009
The impact of solar variability on weather and climate in Central Europe is still not well understood. In this paper we use a new time series of daily weather types to analyse the influence of the 11-year solar cycle on the tropospheric weather of Central Europe. We employ a novel, daily weather type classification over the period 1763–2009 and investigate the occurrence frequency of weather types under low, moderate and high solar activity level. Results show a tendency towards fewer days with westerly and west south-westerly flow over Central Europe under low solar activity. In parallel, the occurrence of northerly and easterly types increases. Changes are consistent across different sub-periods. For the 1958–2009 period, a more detailed view can be gained from reanalysis data. Mean sea level pressure composites under low solar activity also show a reduced zonal flow, with an increase of the mean blocking frequency between Iceland and Scandinavia. Weather types and reanalysis data show that the 11-year solar cycle influences the late winter atmospheric circulation over Central Europe with colder (warmer) conditions under low (high) solar activity. Model simulations used for a comparison do not reproduce the imprint of the 11-year solar cycle found in the reanalyses data.

Einen Monat zuvor war im Dezember 2016 in Climate of the Pasteine weitere Studie zum Thema erschienen. Ein 32-köpfiges Mammutteam um Chantal Camenisch hat die kalten 1430er Jahre in Nordwest- und Mitteleuropa näher analysiert. Die Kältephase ist gut dokumentiert und fällt interessanterweise in eine solare Schwächephase, nämlich das Spörer Minimum. Ob hier vielleicht ein Zusammenhang bestehen könnte? Die Forscher bestätigten zunächst die Kältephase eindrucksvoll mit einem ganzen Strauß an Rekonstruktionsmethoden. Dann jedoch beschritten sie einen Argumentationspfad, der wenig Sinn macht. Sie gaben ihre Daten in Klimamodelle ein und konnten keinen ursächlichen Zusammenhang zwischen Abkühlung und Sonnenabschwächung feststellen. Kunststück, denn die Klimamodelle sind ja genau so programmiert, dass kein Zusammenhang herauskommt. Der Strahlungsantrieb von solaren Schwankungen ist in den Modellen so niedrig angesetzt, dass hier niemals ein Bezug gefunden werden könnte. Damit handelt es sich um einen Pseudobeweis gegen die Sonne, der keinen Wert hat.

Aber eine Erklärung für die Kälte der 1430er Jahre brauchte die Gruppe trotzdem. Man spielte den Joker und behauptete einfach, es wäre eine Laune der Natur, eine kaum vorhersagbare klimasysteminterne Schwankung. Ein schwaches Resultat, das vermutlich ein Kompromiss des riesengroßen Autorenkollektiv war und nicht unbedingt die Meinung jedes einzelnen Teammitglieds widerspiegelt. Ein schönes Beispiel für politisch korrekte Forschung, bei der das Offensichtliche nicht herauskommen darf, weil die Konsequenzen unerwünscht sind. Das wirkliche Resultat: Bei den Klimamodellen ist etwas faul. Albert Einstein: „Das, wobei unsere Berechnungen versagen, nennen wir Zufall“. Hier der Abstract:

The 1430s: a cold period of extraordinary internal climate variability during the early Spörer Minimum with social and economic impacts in north-western and central Europe

Changes in climate affected human societies throughout the last millennium. While European cold periods in the 17th and 18th century have been assessed in detail, earlier cold periods received much less attention due to sparse information available. New evidence from proxy archives, historical documentary sources and climate model simulations permit us to provide an interdisciplinary, systematic assessment of an exceptionally cold period in the 15th century. Our assessment includes the role of internal, unforced climate variability and external forcing in shaping extreme climatic conditions and the impacts on and responses of the medieval society in north-western and central Europe.

Climate reconstructions from a multitude of natural and anthropogenic archives indicate that the 1430s were the coldest decade in north-western and central Europe in the 15th century. This decade is characterised by cold winters and average to warm summers resulting in a strong seasonal cycle in temperature. Results from comprehensive climate models indicate consistently that these conditions occurred by chance due to the partly chaotic internal variability within the climate system. External forcing like volcanic eruptions tends to reduce simulated temperature seasonality and cannot explain the reconstructions. The strong seasonal cycle in temperature reduced food production and led to increasing food prices, a subsistence crisis and a famine in parts of Europe. Societies were not prepared to cope with failing markets and interrupted trade routes. In response to the crisis, authorities implemented numerous measures of supply policy and adaptation such as the installation of grain storage capacities to be prepared for future food production shortfalls.

 

Winterliche Schneebedeckung der Nordhalbkugel hat sich in den letzten 50 Jahren erhöht

Am 10. Februar 2017 erschien im Traunsteiner Tagblatt (TT) ein erfrischendes Interview, in dem sich Günther Aigner gegen die allseits verbreitete Schnee-Endzeit-Stimmung ausspricht:

»Der Klimawandel bedroht den Wintersport derzeit nicht«
Es gibt vielmehr über die Jahrzehnte gesehen ein ständiges Auf und Ab von kälteren und wärmeren Perioden – ohne erkennbare Tendenz. »Der Klimawandel bedroht den Wintersport derzeit nicht«, sagt Günther Aigner, der in Innsbruck Sport und Wirtschaft studiert hat. Niemand könne allerdings voraussagen, wie es in Zukunft aussehe. Prognosen hält er für unseriös.

TT: Wieso haben Sie sich die Mühe gemacht und über Monate Tausende Daten ausgewertet?

Günther Aigner: Mich hat es fasziniert, dass sich alle einig sind, dass der Skisport wegen des Klimas keine Zukunft hat. Also habe ich begonnen, Wintertemperatur- und Schneedaten aus den Alpen auszuwerten. Diese Arbeit war so spannend, dass ich sie nun hauptberuflich mache.

TT: Ihre Untersuchungen haben ergeben, dass die Winter auf den Bergen der Ostalpen sogar kälter wurden, nicht wärmer. Wie kann das sein? Das Abschmelzen der Gletscher ist schließlich eine Tatsache…

Günther Aigner: Die Winter sind auf den Bergen innerhalb der letzten 30 Jahre kälter geworden, weil wir nicht mehr so häufige milde West- und Südwetterlagen wie noch Anfang der 1990er Jahre haben. Es liegt also an der Häufigkeitsverteilung der Großwetterlagen, und nicht am globalen Temperaturregime. Die Gletscher schmelzen, weil die Sommer in den Alpen in den letzten 30 Jahren viel sonniger und heißer wurden. Die Sommerschneefälle auf den Bergen haben sich drastisch reduziert.

TT: Jedes Jahr wieder gibt es die Diskussion um weiße Weihnachten. Ist es nicht ganz normal, dass im Dezember kein oder nur wenig Schnee liegt?

Günther Aigner: Doch, genau so ist es. Es ist normal, dass der Winter rund um Weihnachten erst beginnt. Eine tief verschneite weihnachtliche Landschaft ist somit die absolute Ausnahme und nicht die Regel. Unsere Gesellschaft bewertet den Winter allerdings daran, ob es zu Weihnachten kalt ist und Schnee hat. Das ist absurd.

Weiterlesen im Traunsteiner Tagblatt

Aigners hochinformative Auswertungen können Sie auf der Webplattform Zukunft Skisport finden. Hier geht es direkt zu den Klimadaten. Bereits im Oktober 2016 hatten sich die Betreiber von Seilbahnen gegen die Schnee-Panikmache gewehrt. Beitrag auf ORF Salzburg:

Klimawandel: Seilbahnmanager weiter optimistisch
Milde Winter seien noch über Jahrzehnte kein Problem für den Skitourismus, sagen Pinzgauer Seilbahnmanager. Sie widersprechen damit jüngsten Untersuchungen, wonach Schneesaisonen in den Alpen künftig bis zu 40 Tage kürzer sein könnten.

Wir nutzen die Gelegenheit und schauen in die offiziellen Schneedaten der Rutgers University. Wie hat sich die Schneebedeckung in den letzten Jahrzehnten wirklich verändert? Wir beginnen mit den Winter-Schneetrends für die Nordhalbkugel für die vergangenen 50 Jahre (Abbildung 1). Eine Riesenüberraschung: Die winterliche Schneebedeckung hat sich im letzten halben Jahrhundert erhöht!

Abbildung 1: Schneeausdehnung im Winter auf der Nordhalbkugel während der letzten 50 Jahre. Quelle: Rutgers University

 

Auf der gleichen Webseite kann man auch andere Jahreszeiten wählen. Der Herbstschnee hat ebenfalls zugenommen. Nur im Frühling ist die Schneebedeckung geschrumpft.

Verkleinern wir nun das Betrachtungsgebiet auf Europa und Asien (“Eurasien”). Zunächst wieder der Winterschneetrend (Abbildung 2). Das gleiche Ergebnis wie zuvor: Auch in Eurasien hat sich die winterliche Schneebedeckung in den letzten 50 Jahren erhöht.

Abbildung 2: Schneeausdehnung im Winter in Europa und Asien während der letzten 50 Jahre. Quelle: Rutgers University.

 

Die eurasischen Schneetrends für Herbst und Frühling entsprechen denjenigen der Nordhalbkugel. Auf der selben Webseite gibt es auch die nordamerikanischen Trends, die wiederum den bereits vorgestellten Entwicklungen entsprechen. Auf einer NOAA-Webseite kann man sich die Schneedaten sogar aufgeschlüsselt nach Monaten plotten lassen. In den Monaten September bis Januar ist der Schnee im letzten halben Jahrhundert auf der Nordhalbkugel häufiger, von Februar bis August ist er seltener geworden. Vielleicht sollten die Skifahrer ihren Skiurlaub einfach ein paar Monate vorziehen, anstatt sich im Frühling über Schneemangel zu beschweren?

Nun sind die nördliche Halbkugel und Eurasien riesige Regionen. Aus individueller Sicht interessiert sich jeder für sein eigenes Skigebiet, und dabei können lokale Trends natürlich von den (halb-) globalen Trends abweichen. Beispiel Bayerische Alpen in Deutschland, für die der Bayerische Rundfunk eine Schneestatistik mit sieben Stationen seit 1961 anbietet. Fünf Stationen (Oberstorf, Garmisch-Partenkirchen, Wendelstein, Reit im Winkel, Bad Reichenhall) zeigen einen statistisch signifikanten Rückgang der Schneetage im Winterhalbjahr (hier ist der halbe Herbst und Frühling enthalten) während der vergangenen 55 Jahre. Nur Mittenwald und Zugspitze sind einigermaßen stabil.

Zu beachten ist, dass der Startpunkt der Statistik in den 1960er Jahren in einer natürlichen Kältedelle in der Temperaturkurve liegt. Zwischen 1935 und 1952 lagen die Deutschlandtemperaturen jedoch deutlich über dem Durchschnitt der 1960er und frühen 70er Jahre (Abbildung 3), was vermutlich zu weniger Schneefall führte. Es wäre daher begrüßenswert, wenn die Schneestatistik weiter in die Vergangenheit ausgebaut werden könnte, um ein kompletteres Bild der Trends unnd ihrer natürlichen Schwankungsbreite zu bekommen.

Abb. 3: Temperaturentwicklung in Deutschland während der vergangenen 135 Jahre. Quelle: Quelle: Kaspar, F., H. Mächel (2017): Beobachtung von Klima und Klimawandel in Mitteleuropa und Deutschland, in: Brasseur, G.P., D. Jacob, S. Schuck-Zöller (Hrsg.; 2017): Klimawandel in Deutschland, Entwicklung, Folgen, Risiken und Perspektiven, Berlin Heidelberg, 17-26. Via Wiki Bildungsserver Klimawandel.